20221

A 120 MINUTES

1.	The re A) C)	oots of the equa Equal Irrational	ation (a	- b) <i>x</i> ²	B)	Ratio		:	
2.	The ra	ange of the fund	ction f	$(x) = \frac{1}{2}$	$\frac{ x-5 }{x-5}$, x	$\epsilon \in \mathbb{R}$ a	and $x \neq 5$ is:		
	A)	(-1,1)	B)	[—1, 1	1]	C)	{ -1, 1}	D)	ℝ\ {5}
3.		raight line mak			cepts l	on the	axes and pass	es throug	gh the point
	A)	$\frac{2}{3}$	B)	$\frac{3}{2}$		C)	6	D)	5
4.	The s	traight line $\frac{x-x}{2}$	$\frac{1}{2} = \frac{y-1}{3}$	$\frac{3}{z} = \frac{z-4}{-1}$	lies in	the pla	ane		
	A)	x - 2y - 4z	+ 7 =	0	B)	- <i>x</i> +	-2y + 4z + 7	= 0	
	C)	x - 2y - 4z	+ 21 =	= 0	D)	- <i>x</i> +	-2y + 4z + 22	l = 0	
5.	The v	value of $\int_0^{\pi/2} \frac{1}{(s)}$	$(\sin x)$	$\frac{d^{4}}{\cos x)^{4}}dx$	x is:				
	A)	$\pi/4$	B)	$\pi/2$		C)	π	D)	2π
6.		rea bounded by –axis is:	the cur	rves y =	$= \tan x$	<i>z</i> , <i>y</i> =	$\cot x$, where	$e \ 0 \le x$	$\pi \leq \pi/2$ and
		log 2sq: units	5				2 sq: units.		
	C)	2 sq: units.			D)	$\sqrt{2}$ sc	ı: units.		
7.		dice are thrown total of 8 is:	once.	The pro	bability	of gett	ting an even nu	umber or	the first die
	A)	¹ / ₂	B)	⁵ /9		C)	⁵ / ₃₆	D)	¹ / ₁₂
8.	The l A)	lim <i>sup</i> and lin 1 and 1	n <i>inf</i> f B)				 ⁿ} are respect 1 and -1 		-1 and -1
9.	The s	eries $\sum_{n=1}^{\infty} \frac{n}{(n+1)}$	$\frac{1}{1)^n} x^n$	where x	c > 0 is	conver	rgent if:		
	A)	x > e	B)	$x \ge e$	2	C)	$x \leq e$	D)	<i>x</i> < <i>e</i>

10.	Let $f(x) = 1$ for $x = \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$ and $f(x) = 0$ elsewhere on $[0, 1]$. Then A) f is Riemann integrable on $[0, 1]$ and $\int_0^1 f = 4$. B) f is Riemann integrable on $[0, 1]$ and $\int_0^1 f = 0$. C) f is Riemann integrable on $[0, 1]$ and $\int_0^1 f = \frac{9}{5}$. D) f is not Riemann integrable on $[0, 1]$. 1. Every countable set has measure zero 2. There exists uncountable sets of measure zero						
	A)Both 1 and 2B)1 onlyC)2 onlyD)Neither 1 nor 2						
12.	Let the function f be defined on $[0,1]$ by $f(0) = 0$ and $f(x) = x \sin \frac{\pi}{x}$ when $x \neq 0$. Then A) f is continuous and is of bounded variation $[0,1]$ B) f is not continuous but f is of bounded variation $[0,1]$ C) f is continuous but f is not of bounded variation $[0,1]$ D) f is not continuous and f is not of bounded variation $[0,1]$						
13.	The fixed points of the Mobius transformation $w = \frac{8z-15}{z}$ are: A) 4, 2 B) $\pm 4i$ C) 5, 3 D) $5 \pm 3i$						
14.	The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{z^n}{2^{n^2}}$ is: A) 2 B) ∞ C) 0 D) $\frac{1}{2}$						
15.	Which of the following is true? A) The function $f(z) = e^z$ has an isolated essential singularity at $z = 0$. B) The function $f(z) = e^{1/z}$ has an isolated essential singularity at $z = 0$. C) The function $f(z) = \frac{1}{z(z^2+4)}$ has an isolated essential singularity at $z = 0$. D) The function $f(z) = \frac{\sin z}{z}$ has an isolated essential singularity at $z = 0$.						
16.	Let γ be the circle of radius 1 centered at $z = -i$. The value of the integral $\int_{\gamma} \frac{e^z}{z^2 + 1} dz$ is						
17.	A) πe^{i} B) πe^{-i} C) $-\pi e^{i}$ D) $-\pi e^{-i}$ Which of the following is an element of the subgroup generated by (1 2 3) and (2 3 4) in the symmetric group S_4 A) (1 2) B) (1 3) C) (1 2 3 4) D) (1 3)(2 4)						

18.	 Let G be the multiplicative group of non-zero rational numbers. Which of the following is true of G A) G is cyclic B) G has a subgroup of order 2 C) G has a subgroup of order 3 D) G has a subgroup of order 5 						
19.	Which	of the following g	roups is isomorp	hic to Z	$\mathbb{Z}_{20} \times \mathbb{Z}_{25}$		
	A)	Z ₅₀₀ B)	$\mathbb{Z}_{10} \times \mathbb{Z}_{50}$	C)	$\mathbb{Z}_5 \times \mathbb{Z}_{100}$	D)	$\mathbb{Z}_4 imes \mathbb{Z}_{125}$
20.	The n A)	umber of solutions 2 B)	for x in the equ 3	tation x^2 C)	+x = 0 in the 4	e ring Z D)	12 is 5
21.	Which A)	of the following is 10 B)	s a generator of a 15	a maxima C)	ll ideal in the ri 20	ng ℤ ₁₀₀ D)	25
22.	Which A)	of the following is $x^3 + 2x^2 + 1$		olynomi 2x ³ -			
	C)	$2x^3 + 2x^2 + x +$	1 D)	$2x^{3}$ -	$+x^2 + 2x + 1$		
23.	A)	of the following p $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2})$	3)	isomorp	hic?		
	B)	$\mathbb{Q}(\sqrt{2} + \sqrt{3})$ as					
	C)	$\mathbb{Q}(\sqrt{2},\sqrt{3})$ and	$\mathbb{Q}(\sqrt{2}, \sqrt{5})$				
	D)	$\mathbb{Q}(\sqrt{2},\sqrt{3})$ and	$\mathbb{Q}(\sqrt{2} + \sqrt{3})$				
24.	Which A)	of the following is 7 B)	s not the order of 9	f a finite : C)		D)	12
25.	The sy A) B) C) D)	estem of equations inconsistent consistent and has consistent and has consistent and the	s a unique solutions an infinite num	on ber of so	lutions		
26.		be a $n \times n$ square . Then which one of The equation AX The equation AX	of the following $t' = 0$ has only the following the foll	is not tru he trivial	e. solution.		·

- C) D)
- A is an invertible matrix. The columns of A form a linearly dependent set.

27. Which one of the following is the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$

A)	$\begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	B)	$\begin{bmatrix} -3 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
C)	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$	D)	$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -3 \end{bmatrix}$

Let W be the subspace of the solutions of the system of equations					
x - 2y + z = 0, z = 0	2x - 3y + z = 0 in	\mathbb{R}^3 . Then dim <i>W</i> is:			
	$\mathbb{R}^2 \to \mathbb{R}^2$ is linear	with $T(1,0) = (1,3)$	and $T(1,1) = (2,5)$.		
	B) (3, 8)	C) (1, 2)	D) (1, 8)		
Let $T: \mathbb{R}^3 \to \mathbb{I}$	\mathbb{R}^3 be defined by	$T(x_1, x_2, x_3) =$	$(x_1 - x_3, -x_2, 0)$		
for $(x_1, x_2, x_3) \in$	\mathbb{R}^3 . Then the null s	space of T is			
A) $\{(0, 0, a)$): $a \in \mathbb{R}$ } B) { $(a, 0, 0) : a$; ∈ ℝ }		
	$x - 2y + z = 0, Z$ A) 0 Suppose that $T : .$ What is $T(2,3)$? A) (5, 12) Let $T : \mathbb{R}^3 \rightarrow \mathbb{I}$ for $(x_1, x_2, x_3) \in \mathbb{R}^3$	$x - 2y + z = 0, 2x - 3y + z = 0 \text{ in }$ A) $0 \qquad B) 1$ Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2 \text{ is linear}$ What is $T(2,3)?$ A) $(5, 12) \qquad B) \qquad (3, 8)$ Let $T : \mathbb{R}^3 \to \mathbb{R}^3 \text{ be defined by}$ for $(x_1, x_2, x_3) \in \mathbb{R}^3.$ Then the null s	$x - 2y + z = 0$, $2x - 3y + z = 0$ in \mathbb{R}^3 . Then dim W is: A) 0 B) 1 C) 2 Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear with $T(1,0) = (1,3)$		

A) {
$$(0, 0, a) : a \in \mathbb{R}$$
 } B) { $(a, 0, 0) : a \in \mathbb{R}$ }
C) { $(a, a, 0) : a \in \mathbb{R}$ } D) { $(a, 0, a) : a \in \mathbb{R}$ }

31. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $(2a_1 + 3a_2 - a_3, a_1 + a_3)$ for $(a_1, a_2, a_3) \in \mathbb{R}^3$. Find the matrix which represents T where \mathbb{R}^3 and \mathbb{R}^2 are assigned with standard ordered basis.

A)	$\begin{bmatrix} 2 & 3 & -1 \\ 1 & 0 & 1 \end{bmatrix}$	B)	$\begin{bmatrix} -2 & -3 & 1 \\ -1 & 0 & -1 \end{bmatrix}$
C)	$\begin{bmatrix} 2 & 1 \\ 3 & 0 \\ -1 & 1 \end{bmatrix}$	D)	$\begin{bmatrix} -2 & -1 \\ -3 & 0 \\ 1 & -1 \end{bmatrix}$

32. Let $B = \{(2, 1), (3, 1)\}$ be an ordered basis for \mathbb{R}^2 . If $B^* = \{f_1, f_2\}$ is the dual basis for B, then f_2 is given by

A)	$f_2(x, y) = x - 2y$	B)	$f_2(x, y) = 2x - 4y$
C)	$f_2(x, y) = 3y - x$	D)	$f_2(x, y) = 4y - 2x$

33. Let *T* be the operator on \mathbb{R}^2 defined by T(x, y) = (x, -y) for $x, y \in \mathbb{R}^2$. If (0, 1) is an eigen vector corresponding to an eigen value λ of *T*, then the value of λ is A) 2 B) -2 C) 1 D) -1

34.	Which one of the following is not true in relation with $(,)$, the $g.c.d.$ of two numbers. If $(a, b) = (a, c) = 1$, then $(a, bc) = 1$. (2, n) = 1 for any odd integer $n(a, 1) = (1, a) = 1(a, 0) = (0, a) = 0$							
35.	If $\varphi(n)$ is the Euler 's totient function, then, for any odd prime p , the value of $\varphi(p^2 + p)$ is A) $p\varphi(p+1)$ B) $(p-1)\varphi(p+1)$ C) $p\varphi(p)$ D) $(p-1)\varphi(p)$	2						
36.	C) $p\varphi(p)$ D) $(p-1)\varphi(p)$ Which one of the following is not true? A) $12^{16} \equiv 1 \pmod{17}$ B) $16^{12} \equiv 1 \pmod{13}$ C) $13 \cdot (12)^{16} \equiv 13 \pmod{221}$ D) $13 \cdot (12)^{16} \equiv 1 \pmod{221}$							
37.	Consider the system of linear congruences $2x=1 \pmod{3}$, $3x=1 \pmod{4}$, $4x=1 \pmod{5}$. Then the number of solutions congruent $mod(60)$ is: A) Infinite B) 1 C) 2 D) 3							
38.	A particular solution of the equation $y + y = \sec x$ is: A) $y = x \sin x + \cos x \log \cos x$ B) $y = x \cos x + \sin x \log \cos x$ C) $y = x \sin x + \cos x \log \sin x$ D) $y = x \cos x + \sin x \log \sin x$	$y = x \sin x + \cos x \log \cos x$ $y = x \cos x + \sin x \log \cos x$ $y = x \sin x + \cos x \log \sin x$						
39.	The equation $[(x - y)^2 + 1]u_{xx} + 2u_{xy} + [1 - (x - y)^2]u_{yy} = 0$ is: A) Parabolic B) Elliptic C) Hyperbolic D) Non	e of these						
40.	The characteristic equation of the one-dimensional wave equation $u_{xx} - 4 u_{tt} = 0$, $-\infty < x < \infty$, $t > 0$; are							
	A) $2x - t = \eta$ and $2x + t = \xi$ B) $x - 2t = \eta$ and $x + 2t = \xi$ C) $4x - t = \eta$ and $4x + t = \xi$ D) $x - 4t = \eta$ and $x + 4t = \xi$							
41.	Consider the norms $ _1$, $ _2$, $ _{\infty}$ on \mathbb{R}^2 . Then for all $x \in \mathbb{R}^2$, which one of the following is not true.							
	A) $ x _{1} \leq \sqrt{2} x _{2}$ B) $ x _{2} \leq \sqrt{2} x _{\infty}$ C) $ x _{\infty} \leq x _{2} \leq x _{1}$ D) $ x _{1} \leq x _{2} \leq x _{\infty}$							

- 42. Which of the following statements is true?
 - A) The set of all real numbers \mathbb{R} with usual metric is not complete.
 - B) The open interval (0, 1) with usual metric is not complete.
 - C) The set of all real numbers \mathbb{R} with discrete metric is not complete.
 - D) The Euclidean m space \mathbb{R}^m with usual metric is not complete.

43. Let the set of all real numbers \mathbb{R} be equipped with the discrete metric *d* defined by $d(x, y) = \begin{cases} 1 & if \quad x \neq y \\ 0 & if \quad x = y \end{cases}$

The open ball B(3, 2) centered at 3 and radius 2 is:

- A) $\{3\}$ B) \mathbb{R} C) (1,5) D) (3,5)
- 44. Let *X* be an infinite set with the co-finite topology (In which the closed sets are the finite sets and *X*). Then
 - A) X is a T_2 space and is not compact.
 - B) X is a $\overline{T_2}$ space and is compact.
 - C) X is a T_1 space and is not compact.
 - D) X is a T_1 space and is compact.
- 45. Let $X = (\mathbb{R}^3, || ||_1)$ and $Y = (\mathbb{R}^2, || ||_1)$ be the normed spaces. Let $F : X \to Y$ be defined by $F(x_1, x_2, x_3) = (x_2, -x_3)$. Then which one of the following is true.
 - A) *F* is surjective, closed but not open.
 - B) *F* is open and continuous, but not closed.
 - C) *F* is linear, continuous but not closed.
 - D) *F* is linear, continuous and open.
- 46. Let X be an inner product space and for $x, y \in X$, let ||x + y|| = 25, ||x - y|| = 5, ||x|| = 15. Then ||y|| is:
 - A) 10 B) 15 C) 5 D) 9
- 47. Let *H* be the complex Hilbert space l^2 for $n = 1, 2, \ldots$, let $u_n = (0, \ldots, 0, 1, 0, \ldots)$, where 1 occurs only in the n^{th} entry. Then which one of the following is not true.
 - A) For $x \in H$, $x = \sum_{n=1}^{\infty} \langle x, u_n \rangle u_n$
 - B) For $x \in H$, $||x||^2 = \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$
 - C) If $x \in H$ and $\langle x, u_n \rangle = 0$ for all *n*, then x = 0.

D)
$$\overline{span\{u_n: n = 1, 2, ...\}} \neq H$$

48. Let *H* be the real Hilbert space $L^2([-1, 1])$ and $f: H \to \mathbb{R}$ be defined by $f(x) = \int_{-1}^{1} x(t) \cdot t \, dt$. Then ||f|| is

A) 1 B)
$$\frac{1}{\sqrt{2}}$$
 C) $\frac{\sqrt{2}}{\sqrt{3}}$ D) 2

49.	Let <i>H</i> be the real Hilbert space l^2 and $A : H \to H$ be defined by
	$A(x(1), x(2), x(3), \ldots) = (x(1), 0, x(3), 0, \ldots).$
	Then which one of the following is not true.

- $A^2 = A$ A)
- The null space of A is closed B)
- The null space of A is finite dimensional C)
- D) ||A|| = 1
- 50. The point of intersection of the tangents at the ends of the latus rectum of the parabola $y^2 = 4x$ is
 - A) (1,0)B) (-1,0)C) (-2,0)D) (0,2)
- The value of $\sqrt{2i}$ is equal to: 51. C) A) 2+iB) 2-i1+iD) 1-i

52.	The s	hortest distar	ice of the	line y-	-x - 1 = 0 from the parabola	$y^2 = x$ is	5:
	A)	$2\sqrt{3}$	B)	$\frac{2\sqrt{3}}{4}$	C) $\frac{3\sqrt{2}}{8}$	D)	$\frac{13}{4}$

53. The volume generated by rotating the triangle with vertices at (0,0), (3,0) and (3,3)about x-axis is: A) 18π B) 2π C) 36π D) 9π

54. If A is orthogonal, then:

- A)
- B)
- A^{T} and A^{-1} are both orthogonal A^{T} is orthogonal, but A^{-1} is not A^{-1} is orthogonal, but A^{T} is not C)
- None of these D)
- 55. Let rank (AB) = k, then:
 - rank (A) \leq k and rank (B) \geq k A)
 - B) rank (A) \leq k and rank (B) \leq k
 - C) rank (A) \geq k and rank (B) \leq k
 - D) None of these

56. Z be the set of integers and define $a \oplus b = a + b + 1$ and $a \oplus b = a + b + ab$, then the ring (Z, \oplus, \odot) is:

- Commutative ring A) B) Integral domain
- C) Field D) None of these

If $\gamma : [0,1] \to C$ is a closed rectifiable curve and $a \notin \{\gamma\}$ then $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ is 57.

- A) B) Rational number Integer C)
 - Real number D) Complex numbers

58.	Let $J_p(x)$ denotes the Bessel function, then $\frac{d}{dx}(x^p J_p(x))$ is:								
	A)	$x^p J_{p-1}(x)$		B)	x^{p-1}	$J_{p-1}(x)$			
	C)	$x^{p-1}J_p(x)$		D)	x^{p-1}	$J_{p-2}(x)$			
59.	How 1 A)	many elements 48	of order 7 B) 7		a group C)	o of orde 24	er 168?	D)	168
60.	The a A)	utomorphism g Z ₂	roup Aut (AB)		isomorp C)	ohic to: Q		D)	Ζ
61.	The c A)	omplete solution $z(1 + a^2) =$	$pn of z = p^2$ x + ay + a	$(a + q^2)$ is give b B)	en by: 4z(1	$+ a^2) =$	= (x +	ay +	<i>b</i>) ²
	C)	z(1+a) = ((x + b)y	D)	None	of the a	bove		
62.		quation of the e			of curve	es repre	sented l	by gene	ral solution
	A) C)	ifferential equa particular sol complementa	ution	B)	-	lar solut of the a			
63.	dimer	If V and W are vector spaces of dimension m and n respectively over F, then the dimension of $Hom(V, W)$ is:							
	A) m	B) m	n + n	C)	m / n		D)	mn
64.	If K i A)	is an extension $[F(a): F] = n$	field of F a		s algebr [F(a):		egree n	over F	, then
	C)	[K:F(a)] = n	1	D)	[F,F(a	$\mathfrak{a})] = \mathfrak{n}$			
65.	A)	be a linear map Rank(T) < c Rank(T) > c	dim(V)	B)		(T) =			
66.	The id A) C)	deal < (x^2+4) a maximal id not a prime id	eal	s B) D)	-	ne ideal of these			
67.		$f(x) = x^3 + 3x^2$ S_3					oup is	D)	None of these
68.	A)	h of the followi $W = \{(a, b, c, c, b, c, c, b, c, c,$	c): $a < 0$)} B)	W =	{(<i>a</i> , <i>b</i> , <i>c</i> of these	$(a^2):a^2$	+ b ² +	$c^2 \leq 1$
69.	The s	um of the series	$s \frac{1^2}{1!} + \frac{2^2}{2!} + \frac{1}{2!}$	$\frac{3^2}{3!} + \cdots$ is					
		e ³	1. 2.	$(e^3 - e^{-3})$		C)	3e	D)	2 <i>e</i>

- 70. An integrating factor for the differential equation $(1 + x^2)\frac{dy}{dx} + y = e^{tan^{-1}x}$ is
 - A) $sec^{2}x$ B) $e^{2tan^{-1}x}$ C) $tan^{-1}x$ D) $e^{tan^{-1}x}$
- 71. The value of λ for which the diff. equation $(xy^2 + \lambda x^2y) dx + (x+y) x^2 dy = 0$ is exact is A) 1 B) -1 C) 2 D) 3
- 72. Every finite Hausdorf space is
 - A) connectedB) totally disconnectedC) disconnectedD) normal
- 73. A topological space is said to be locally compact if
 - A) each of its open set is compact
 - B) each of its closed set is compact
 - C) each of its subspace is compact
 - D) each of its points has a neighbourhood with compact closure
- 74. A metric space is compact if and only if
 - A) it is complete
 - B) it is totally bounded
 - C) it is complete and totally bounded
 - D) None of these
- 75. A bag contains a number of marbles of which 80 are red, 24 are white and the rest are blue. If the probability of randomly selecting a blue marble from this bag is 1/5, how many blue marbles are there in the bag?
 A) 25 B) 26 C) 27 D) 28
- 76. At which point the tangent of the curve $y = 2x^2 x + 1$ will be parallel to y = 3x + 9A) (2, 9) B) (3, 9) C) (1, 2) D) (2, 1)
- 77. The series $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots =$ A) $\frac{\pi}{4}$ B) $\frac{\pi}{8}$ C) π D) 1
- 78. The minimum value of $f(x, y) = x^2 + y^2 + 6x + 12$ A) 3 B) 6 C) 8 D) 9
- 79. Find the points of inflection of the function $f(x) = x^4 12x^3 + 6x 9$ on the interval $-2 \le x \le 10$ A) x = 0, 6 B) x = 0, -6 C) $x = \pm \sqrt{6}$ D) $x = \pm \sqrt{12}$
- A ball is dropped from a height of 12 m and it rebounds 1/2 of the distance it falls. If it continues to fall and rebound in this way, how far will it travel before coming to rest?
 A) 36 m
 B) 30 m
 C) 48 m
 D) 60 m